In reactions I-V and VII the predominant nucleophilic replacement of the halogen atom X was probably accompanied by a small amount of olefin-forming elimination of HX. But since the transition states for the two reactions are electrically similar (for I and II they are identical) no effort was made to separate the rate constants for the two processes.

RESULTS

The inaccuracies of titration together with the uncertainty of the pressures, temperatures and times of reaction could cause errors of 30 % in the rate constants; the results are therefore more of qualitative than of quantitative significance. The first-order rate constants for reactions I-V and the second-order constants for VI-VIII were worked out by the usual formulae. The second-order constants have been corrected for the contraction of the solutions under pressure.

ala daria a COCTTA C

The results are given below.

	, neuro	u(SNI)	sorcolys	s of C(CI	13)3CI In	ou % etha	inol al 25	C	
p (atm) 10 ⁶ k (sec ⁻¹)	1 8-4	4	1500 21	3000 41	6000 74	9000 134.	12000 170	15	000 240
÷.,	II, neu	tral (S _N	1) solvol	ysis of C(CH3)3Cl	in methand	ol at 36° C	2	
p (atm) 10 ⁶ k (sec ⁻¹)	1 3-1	: ا	5000 38	10000 74	15000 140		*		
1	III, neut	tral (S _N	2) solvolj	vsis of C ₂	H ₅ Br in 8	0 % ethan	ol at 55° (С	
p (atm) 10 ⁶ k (sec ⁻¹)	· · · 1 1·4	\$	1000 2·4	2000 3-9	3000 5-7	5000 9·5	10000 23	15	000 46
	IV, ne	eutral (S	$S_N 2$) solv	olysis of (C ₂ H ₅ Br in	methanol	at 65° C		
p (atm) 10 ⁶ k (sec ⁻¹)	1 1·49	500 2·3	1000 3-5	1700 5-6	3000 8·1	6000 21	9000 44	12000 66	15000 90
	V, 14	eutral (S	S _N 2) solt	olysis of (C_2H_5I in n	nethanol a	at 65° C		
p (atm)	1		750	1700	3000	6000	9000	15	000
106 k (sec-1)	1.1	4	2.2	3.5	5-4	8.4	12.1		21.3
A consider	rable an	nount o	of free io	dine was	produced	t in this	reaction.	nossibly	from

oxidation of the hydrogen iodide. The rate constants may therefore be too low.

p (atm)	1	1000	2000	3000
$0^{6} k (\text{sec}^{-1} \text{ mole}^{-1} \text{ l.})$	5-7	7-8	9-8	12.5

* These measurements were made by Mr. W. Strauss.

vii, and the low	2) 501001	,515 0J C2	angua man	114000	ing in men	14/101 41 50	0
p (atm)	1	3000	6000	90	000	12000	15000
105 k (sec-1 mole-1 l.)	3.8	10-0	14	-2	22.1	26.1	33-2
VIII, conv	ersion of	NH4NC	O into (N	H ₂) ₂ CO	in water	at 60°C	
p (atm)	1	1500	3000	6000	9000	12000	15000
103 k (sec-1 mole-1 l.)	1.62	1-01	0-60	0-43	0-34	0.31	0.29
					the second second second	11 C 1 C 1	

DISCUSSION

For convenience the results listed in the last section are summarized in table 2, where the symbols k_p represent the rate constants at the pressures p (atm). In fig. 2 the rate constants have been plotted on a logarithmic scale to give an indication of the change of activation free energies with pressure.

It is evident that the three classes of reactions show the pressure effects which were predicted in the introduction. A point which calls for comment, however,

1190